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including spin-orbit and crystal field effects 
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Orsay CCdex, France 
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Abstract. In this paper we consider a more realistic approach to the periodic 
Anderson model by including spin-orbit and crystal field effects using the slave- 
boson technique. Looking firstly a t  the degenerate case with appropriate spin orbit 
coupled bands, we show that while for T = 0 we obtain the same results as the 1 / N  
approach there are differences when we extend to finite T or when we go beyond the 
mean-field theory. We consider also crystal field splitting within the 1 / N  approach 
and show that this gives an anisotropic susceptibility in qualitative agreement with 
experiment. The inclusion of spin-orbit coupling again does not affect the results a t  
T=0. 

1. Introduction 

The experimental properties of the normal state of the mixed valent and heavy-fermion 
compounds depend in general on two features. Firstly there are the universal proper- 
ties arising from a Kondo-like effect. We observe a crossover from an enhanced Pauli- 
like susceptibility near T = 0 to  a Curie-Weiss-like susceptibility at  high temperatures. 
The linear coefficient of specific heat at T = 0, y, is enhanced by approximately the 
same factor as the susceptibility, although the Wilson ratio appears to be less than 
one (Stewart 1984). The resistivity varies as AT2 close to  T = 0, where A N y2, goes 
through a maximum at temperatures somewhat lower than the Kondo temperature, 
TK, and decreases as log T at high temperatures. Other features are non-universal and 
are due to  the crystal field splitting which is important in many of the compounds. 
The susceptibility only becomes truly Curie-Weiss-like for relatively higher temper- 
atures which are determined by the crystal field splittings and the resistivity may 
have extra structure with a second peak at  a temperature roughly corresponding to  
the crystal field splitting. The magnetic susceptibility and the transport properties 
are strongly anisotropic in the non-cubic Ce compounds (Bhattacharjee e t  a1 1989, 
Gignoux et  a1 1988, Jaccard et  a1 1987, 1988 and Onuki et  a1 1984). 

The periodic Anderson model has been widely used as a starting point for theories 
of the heavy-fermion compounds. The slave-boson method has proved a useful and 
systematic approach for dealing with the problems of strong interactions in this model 
(see for example Coleman 1987, Millis and Lee 1987). The effects of spin-orbit coupling 
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and crystal field effects have largely been ignored in previous theories where it has been 
assumed for simplicity that the hybridization matrix element, V, is independent of spin 
and wavevector and that both the f and conduction electrons have ‘spin-” (we shall 
refer to  this as the ‘l/N’ model). The main aim of this paper is to  consider a more 
realistic approach to  this Hamiltonian by including these effects. It has already been 
suggested by Zou and Anderson (1986) that spin-orbit coupling is an important effect. 
Their principal result was that the effective magnetic moment is strongly reduced due 
to spin-orbit effects thus explaining why the Wilson ratio, calculated using the full 
magnetic moment, is less than one. This was subsequently refuted by several people 
and the situation remains unresolved (Zhang and Lee 1987, Aeppli and Varma 1987 
and Cox 1987). Nonetheless, it is clear that the inclusion of spin-orbit coupling gives 
a qualitatively different physical picture. Only one specific linear combination of the 
six local f states can hybridize with a conduction state of given spin and momentum. 
The remaining four f states are unhybridized. This can be compared with the 1/N 
model where we have two six-fold degenerate bands. It cannot be assumed that the 
results from the two models will be equivalent. The fluctuations around the mean- 
field solution will also be affected and in general we will not generate an expansion in 
1/N. Including crystal field effects is also clearly important for a realistic description 
of many of these compounds and gives rise to qualitatively different features. Crystal 
field splitting is most easily included in the ‘l/N’ model where at  low temperatures 
N is effectively 2. The physical picture is again modified when the correct spin-orbit 
coupling is included. 

The layout of this paper is as follows. We start by considering the slave-boson 
approach to  the periodic Anderson model where the f level is N-fold degenerate, 
( N  = 2 j  + l),  and the correct IC- and spin-dependence of V is taken into account. In 
section 2 we consider the slave-boson mean-field solutions for this model and gener- 
ate quasiparticle bands (these are essentially the same as those obtained by Zou and 
Anderson 1986). The mean-field solution is then used to calculate the magnetic sus- 
ceptibility both at  T=O and at  finite temperature. Within the slave-boson mean-field 
approximation the Van Vleck contribution to the susceptibility needs to be included 
for consistency and at T = 0 we recover the result from the 1/N model. We consider 
the arguments as to  the validity of this result. As shown previously (Evans el a1 1989) 
we can calculate the susceptibility up to temperatures well above the Kondo temper- 
ature. The results differ from those for the 1/N model in that we no longer find a 
pronounced Kondo peak at  low temperatures. 

In section 3 we use the same model to look at the Gaussian corrections to the 
mean-field solution. We use these to  calculate the correction to the Wilson ratio and 
to look at  the energy and frequency dependent susceptibility. The correction to  the 
Wilson ratio has a term N 1/N exactly as found in the 1/N model. There are, however, 
additional terms depending on /A,*, the effective moment of the Pauli-like contribution 
to  x. ImX(w,L) is shown to be significantly different from that calculated with the 
1/N model and has a much greater inelastic contribution. 

We consider next the inclusion of crystal field splitting. We look first (section 4) 
at the inclusion of crystal field splitting within the 1/N model, i.e. we neglect the 
IC- and spin-dependence of V ,  but lift the f-level degeneracy to  give three doublets. 
We use the mean-field solution use to calculate the susceptibility as a function of 
temperature. This is strongly anisotropic and depends sensitively on the details of the 
crystal field levels. The effect of crystal field splitting on the Gaussian fluctuations is 
briefly mentioned. 
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The generalization to a model including both spin-orbit coupling and crystal field 
splitting is discussed in section 5 .  The mean-field solution is more complicated and in 
general we need to solve a quartic equation to find the quasiparticle bands. We can 
however calculate -y and xz at T = 0 without solving for the bands, giving precisely 
the results found previously. 

Finally, in section 6 we compare our results for the anisotropy of x with experiment. 
This gives us some sort of test of the accuracy of the 1/N expansion with N = 2. The 
quantitative agreement is far better than we might reasonably expect and several 
qualitative features are correctly predicted. 

2. The magnetic susceptibility including spin-orbit coupling 

We consider here the periodic Anderson model with a realistic hybridization ma- 
trix element for a six-fold degenerate f level. The hybridization term is of the form 
(Vmu(k) = V0Y,,-,(k)(3lm - U ,  fu l im) ,  where Y3m-u(k) is the spherical harmonic 
for 1 = 3 and (31m - U ,  ful5m) = (4a)'/'[(7 - 4 ~ m / 1 4 ) ] ' / ~  is the Clebsch-Gordan 
coefficient for spin-orbit coupled states with j = 5 and 1 = 3 .  

The slave-boson method allows us to write an effective Hamiltonian which is equiv- 
alent to this model in the limit U + CO (see, for example, Millis and Lee 1987 and 
Rasul and Desgranges 1986 for details of the method). If we then take the 'mean-field' 
approximation we are left with an effective hybridization Hamiltonian in which the 
hybridization, Vmu(k), and f level energies, E,,, are renormalized. The mean-field 
effective Hamiltonian including spin-orbit coupling can then be written 

H = (Fmu(k) exp(iRj k)& f; + HC) + iX(p2 - 1) 

(2.1) 

ckCl , ,Cka + Ccfmfimtfk + 
ku im kuim 

where VmU(k) = pVmu(k) and cfm = E,,+iX. p and i X  are the mean-field parameters 
which are determined by minimising the free energy. This gives p2 = 1 - nf where nf 
is the mean f valence. The effective hybridization becomes small in the Kondo limit 
(nf -, 1). cfm gives the energy scale for the system and is small in the same limit. In 
this section we shall consider the degenerate case and drop the subscript m from cfm. 

It is easily seen that only two orthogonal linear combinations o f f  levels hybridize 
with the conduction electrons and by defining 

we can rewrite the Hamiltonian as 

ku 17 kui 

where V = 3'I2V,. The sum over 7 is a sum over the six orthogonal linear combinations 
of f,!,, which include fi. It is clear that we obtain two quasiparticle bands and four f 
levels localized at  cf .  

The mean-field equations can be written in the usual way and we obtain 

1 - p2 = nf = - T ~ G ; ( I ~ )  (2.4) 
k27 

cf = E, + T V ~  G,,G;(L) 
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where G{(k) is the Fourier transform of (T, fit(r)fi(O)) and Go = (U - eh)-’. Here 
IC represents the four vector ( k , ~ ) .  

These can be solved at  finite temperature. It has previously been shown that the 
mean-field solution for the lattice differs from that for the single impurity in that we 
need to include the temperature dependence of the Fermi level, p.  This can have a 
significant effect on the value of the artificial phase transition, T,, (Evans et a1 1989). 
The Fermi level changes by an amount N W (  1 - nf)  from T = 0 to T = T, and the 
value of the bare f-level energy E, as measured from the Fermi level is shifted by the 
same amount. The mean-field equations are very sensitive to the value of E, and, for 
example, with the parameters used previously, i.e. V/W = 0.1 and E,/W = -0.08, we 
obtain T, N lOT,. The result is, however, dependent on the bare parameters chosen. 
For nf a t  T = 0 very close to one (the Kondo limit) the effect becomes negligible and we 
get back to the one impurity result, T, - TK. However, in the ‘scaling’ limit, W + 00, 

T, + 00 also. The results a t  finite temperature, therefore, become non-universal and 
we expect the temperature dependence of the susceptibility to depend on T,. In fact 
‘universal’ behaviour is regained as T, becomes large and we shall perform calculations 
in this region. We note that a calculation of the transition temperature for the lattice 
has recently appeared (Harigaya 1990). Similar parameters to those above were used 
but the temperature dependence of the Fermi level was neglected leading to a small 
transition temperature being found. 

We want now to consider the calculation of the magnetic susceptibility within this 
model. The free energy is given by 

F = T ln[iw - Eau(k)] + T ln(iw - Er,) - nf(Ef - E,) 
k,iw u , a = f  iw,rl#o 

where ETt,(k) are the quasiparticle energies for the two hybridized bands 

E*,(k) = $ { ~ k  + Ef,, f [ ( ~ k  - E f u ) 2  + 4V2]1’2} (2.7) 

and all energies are defined relative to the Fermi energy. To calculate the susceptibility 
we transform to real frequencies and take the second derivative with respect to h. 
For this we need to expand E,,(k) and E,, as perturbation series in h. We write 
wavefunctions for describing the quasiparticle bands, and $, (7 # U )  for the local 
levels. 4, are essentially the same as those derived by Zou and Anderson (1986). We 
then need to take linear combinations of these, $, and +”, such that ($, lptl$v) = 0. 
This allows us to write 

with analagous expressions for E+, and E,,,. The first term is O(h)  and gives rise to 
Pauli or band like terms and the second, O ( h 2 ) ,  gives a Van Vleck contribution. We 
now have 
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Evaluating the first matrix element in (2.8) gives 

Using this, the contribution to the susceptibility at  T = 0 from the Pauli-like terms 
is x = 2pzffpom*/m where m * / m  = c2/6: is the mass enhancement which is large, 
and the effective moment pen is much smaller than the full magnetic moment, po: 
pzff sz 0.18pi. It is claimed by Anderson and Zou (1987) that it is sufficient to consider 
these terms only and that this gives an explanation of the experimental observation 
that the Wilson ratio, which is evaluated using the full magnetic moment, is somewhat 
less than one. 

The calculation neglects the contribution from the second term, the 'Van Vleck' 
terms which can be seen to have an effective moment p i  - pzff. Including these the 
susceptibility is given by 

(2.11) 

where y z  = E,(W - p )  and y, = E,(-W - p ) .  The Fermi level, p ,  can be approxi- 
mated by p = W(l - nf).  At T = 0 we regain a susceptibility with the full magnetic 
moment and a Wilson ratio of one as previously found by several people (Zhang and 
Lee 1987, Aeppli and Varma 1987, Cox 1987). The 1/N model and the spin-orbit 
coupled model thus give the same result at  T = 0. Extending the calculation to 
finite temperatures, however, we find a somewhat different behaviour. At low T the 
susceptibility is virtually independent of temperature with a very weak maximum at 
T - 0.2TK. This is followed almost immediately by a 1/T behaviour. This can 
be compared with the T dependence in the 1/N model where there is a pronounced 
Kondo maximum again at  T - 0.2TK (Evans et a1 1989). In both cases the magnetic 
moment in the high-temperature regime is reduced by a factor - 1 - 1/N due to 
the mean-field approximation. It is puzzling that the more realistic model produces 
poorer results. 

If we include only the Pauli contribution then the moment in the Curie-Weiss 
regime is - pzff. According to Anderson and Zou (1987) we also need to include the 
unrenormalized Van Vleck terms but these will give us a Curie-Weiss law only for 
T > A,, = p 0 V 2 / r .  

For exactly 2 electrons per site the lower band is just full and there is no con- 
tribution from the Pauli-like terms. In this case the Van Vleck terms remain and 
the susceptibility is still large. As suggested by Anderson and Zou (1987) we may 
hope then to deduce experimentally whether or not the Van Vleck terms need to be 
included in the calculation. There is experimental evidence that for SmB6 the Fermi 
level lies in the gap so we appear to be able to resolve the situation by looking at  the 
magnetic susceptibility of this compound. The situation is not, however, this simple. 
The addition of a single additional electron into our system pushes the Fermi level to 
cf and the contribution to the susceptibility from the Van Vleck terms also becomes 
zero. The system is therefore very sensitive to small perturbations. It appears that 
the experimental results are not sufficient to chose between the two theories. 
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3. The fluctuation terms 

We have seen in the previous section the effect that including realistic spin-orbit 
coupling has on the lowest order approximation, the ‘mean-field’ solution. We now 
wish to look at the effect this has at the next level of approximation, the Gaussian 
fluctuations. In the mean-field theory we have written p(k )  = p + p(k) and iX(k) = 
i X  + i i (b)  where p and iX are constant, and then assumed that b(k) and i$k) are 
small and can be neglected. We want now to include terms quadratic in 6 and A. The 
free energy can be written 

F =  - T l n Z =  F m f + T C T r I n d e t S - ’ ( k )  (3.1) 
k 

where F,, is the contribution from the mean-field terms and S is a 2 by 2 matrix 
coming from the fluctuations. The elements of S can be written 

Sl l (k)  = Sp,(k) = cf - Eo - TV2 CGL(kl )GO(k1+ k) 
kl 0 

These can be compared with the matrix elements for the 1/N model (Rasul and 
Desgranges 1986). 

We can now calculate the correction to the Wilson ratio. The contributions to  
x and y consist of a variety of terms. First, there are terms which come from the 
corrections to  n, and cf .  These are clearly the same for both x and y. Secondly 
there are terms coming from the temperature and field dependence of S ( k ) .  Within 
the 1/N model these also give the same contribution to x and y. The situation is 
somewhat more complicated in the present case. We need to evaluate d 2 / d h 2  applied 
to the elements of S. At T = 0 there are two types of term. There are intraband 
terms from the lower band and interband terms which are most important between 
the lower quasiparticle band and the local levels. For the intraband terms we can take 
a 2 / d h 2  inside the sum over k and write 

We can then perform a partial integration for the second term to obtain d 2 / 8 h 2  = 
p i d 2 / d E Z .  The contribution to y from these terms is entirely equivalent. In the 
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interband terms, however, both E- and cf,, depend on h and we obtain additional 
terms. There are differences between the temperature and field dependence and we 
obtain a contribution to the Wilson ratio which depends on &. It is difficult, however, 
to estimate the magnitude of this term without performing the full calculation. 

Finally we have a term that contributes to  the temperature dependence but not 
the field dependence of the free energy coming from the T dependence implicit in the 
frequency sum in the expression for FG. We can rewrite the contribution to the free 
energy from the fluctuation terms as 

where nB is the Bose function. To calculate the term in T2 needed for the specific 
heat we only need to know the leading order terms in w for S. If we first neglect the 
terms coming from the localized levels, we find that the correction to the Wilson ratio 
is - 1/2 in the Kondo limit, the result we would have for an f degeneracy of 2 in the 
1/N model (Millis and Lee 1987). We now need to see how the localized levels affect 
this result. For w + 0 the imaginary part of S comes purely from intraband terms 
and the localized levels play no part. For the real part, however, the interband terms 
are of the same form as the intraband terms in the T ,  w, k -+ 0 limit. This leads to a 
contribution to the Wilson ratio - 1/N, exactly as is found for the 1/N model. 

We can also calculate the energy and frequency dependent magnetic susceptibility. 
It is interesting to  note that for small w the interband terms again do not contribute 
to ImX(k) and we therefore find that the effective moment for this is oc p&. At higher 
frequencies the full magnetic moment will be recovered. We find, therefore, a much 
greater weight for the inelastic contribution compared with the quasielastic contribu- 
tion than is found in the 1/N model. In contrast the real part of the susceptibility 
as w goes to  zero depends on the full magnetic moment. The Fermi liquid relation 
between the two becomes 

The 1/N result is recovered by replacing peR by po and the factor 2 by N .  It ap- 
pears that the imaginary part of the susceptibility, important for modeling neutron 
scattering, is significantly different in this model compared with the 1/N approach. 

4. Crystal field splitting in the 1/N model 

Having considered the effect of spin-orbit coupling in the case where the f level is 
degenerate, we now look at the effects of crystal field splitting. For simplicity we 
consider first the 1/N model where we lift the f-level degeneracy but neglect the k- 
and spin dependence of V ,  i.e. we put Vm,(k) + V and cko + ckm in (2 .1) .  We 
consider principally the mean-field solution. 

In non-cubic compounds the effect of the crystalline electric field is to split the 
N-fold degenerate level into doublets. The term in the Hamiltonian corresponding 
to the localized f level will be of the form CiM cfMfz(k)fL(k) where we have used 
M to  denote the linear combination of m states which give eigenstates of the crystal 
field. For the three values of ]MI we can then write cfM1 = cf-MI = cfO for the 
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ground state, EfM,  = = cfO + Al = cfl for the first crystal field level and 
‘ f M 3  = ‘ f - M s  = cm + Az = cf2 for the second level. Within the slave-boson mean-field 
approximation we will have six quasiparticle bands with strong peaks in the densities of 
states at cm, cfl and cf2 respectively. The f electron doublets are all shifted by the same 
amount iX and there is no rescaling of the crystal field splitting. It is interesting to  ask 
whether the same crystal field splitting is preserved to higher order in the expansion. 
If we calculate the f electron self-energy, E&, to  leading order in the fluctuations we 
find that this is dependent on m and hence the higher order effects do in fact alter the 
splitting. We can compare with a different method, the variational method, applied 
to the one impurity problem. Here the crystal field splitting is also preserved when we 
turn on the hybridization. It has been shown, however, that including an anisotropic 
mixing interaction (i.e. V, -+ V,) gives rise to  a splitting of the f levels of the correct 
order of magnitude to account for the splitting observed (Levy and Zhang 1989). If 
we included this effect in the present model we would then find an f-level splitting in 
the Fermi liquid state which is very different to that of the magnetic ions. 

The mean-field equations can be written as before. We now have 

nf = - T C G L ( k )  
k M  

where G L ( k )  is the Fourier transform of (T7fz(~)fL(0)). Within this ‘l/N’ type 
model there is no term giving scattering between subbands with different values of M 
and to  be consistent we ought to  compute the Fermi level separately for each subband. 
This feature has previously been noted for the one-impurity problem (Nozi6res and 
Blandin 1980) where it is a real effect. In the present case it is an artifact of the 
1/N-like approach and represents a shortcoming of the model. Although not self- 
consistent it appears more realistic to assume a common Fermi level for the three 
hybridized subbands. 

We can now calculate the susceptibility both along the c axis, xz, and perpendic- 
ular to  i t ,  x ~ , ~ .  The susceptibility consists of a mixture of ‘intraband’ or ‘Pauli’ terms 
and ‘interband) or ‘Van-Vleck’ like terms. In general we can write 

where the sum over n runs over the three crystal field levels and we have defined the 
index n + 1 to be 0 for n = 2. A,, = Fz/(cz + (E,, - and E,, is given 
by (2.7) but with cf + cfn. The coefficients a$ and p,” depend on the crystal field 
configuration. For the configuration 

10) = I f f )  11) = I f $) 13) = I f 5) (4.4) 
we have 
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and 

We can consider also the configuration 

p; = 0. 

10) = al f :) - b l 7  4) 
11) = I f 4) 
12) = al f 5 )  + bl F 8). 

As has been shown by Zhang and Levy (1989) we now get 

ai = a ( 5 a 2  - 3b2)2 crf = ;i 1 

( 4 . 7 )  

cr3 = $ ( 3 a 2  - 5b2)2 
(4.8) 

and 

a; = = 5ab a" - 9 1 - 4  

p," = -4b2 
(4.9) 

pi" = -4a2 p; = - ! (a2  - b2)'. 

For a large crystal field splitting we can approximate x,, = 2p,,g2&crKp2/& 
where K is the ground state. In fact we expect the contribution from the upper 
crystal field levels to  be significant, especially from the interband terms which fall off 
only as l / A .  

We can compare with the expression for y 

(4.10) 

If A I ,  A2 >> q, a Wilson ratio of one is obtained provided the effective moment used 
in evaluating it, is that of the lowest energy doublet. 

The susceptibility can also be calculated as a function of T. We note that x is 
approximately a universal function of Ai/TK, AJTK as is found from exact calcula- 
tions for the one impurity model (Schlottman 1984). The results depend strongly on 
the values of Ai/TK, A2/TK and on the configuration used. The results are compared 
with experiment in the last section. 

Finally in this section we mention the effect of crystal field splitting on the Gaussian 
fluctuations. The correction to  the Wilson ratio can be calculated and is given by 
AR - ++ O(TK/Ai, TK/A2). The energy and frequency dependent susceptibility can 
also be calculated. We note that the relationship between ImX/w and Rex  is more 
complicated in this case and there is no simple Korringa relation. 

5. Crystal field splitting and spin-orbit coupling 

In section 2 we saw that for a degenerate f level the physical picture is different 
depending on whether or not we include the spin-orbit coupling and that the results for 
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the two models are not necessarily the same. In view of this we consider here the case 
where both crystal field splitting and spin-orbit coupling are included in the model. 
Looking at the mean-field solution this gives a qualitatively different picture with four 
quasiparticle bands. Calculating the bands involves solving a quartic equation and 
we whall not attempt to  do that here. We shall show, however, that it is possible to  
calculate y and ~ ~ ( 0 )  without solving for the full band structure. 

For simplicity we consider the case where the crystal field levels are pure m states. 
It is convenient to define linear combinations off, and f-, which hybridize with the 
conduction electrons of a given spin 

Substituting (5.1) in (2.1) we obtain 

ku i n o  kuin 

( 5 4  

where h : / 2 ( k )  = i ( 1  - 22’ + 5t4 ) ,  h$,(k) = i (1  + 14t2  - 15t4)  and h$,(k) = 
y( 1 - 2 t 2  + z4) with t = cos 8. 

For large crystal field splitting it is reasonable to  assume that it is only the ground 
state doublet which is involved in forming the lowest quasiparticle band. y and xt 
can be calculated at T = 0 with this approximation and a Wilson ratio of one is found 
exactly as above. There is no change in x due to the terms hm(x) and the reduction 
of the Wilson.ration proposed by Zou and Anderson (1986) is not found. 

We now wish to  consider what happens when we allow for the presence of the 
higher lying doublets. The following relation between the f and c Green functions is 
easily shown: 

Ignoring the small contribution from the conduction electrons y is found from 
ImG;,(O). Assuming the Fermi level lies in the lowest band, E - o ( k ) ,  this gives 
ImG;, = q 2 h k ( w  - qn)-21mG: = p 2 h k ( u  - cfn)-2acS(w - E - o )  where a, is the 
conduction electron weight in the lower band given by a, = a E - , / d e k .  y is again 
given by (4.10). 

A similar calculation for x2 can also be performed. The perturbation due to the 
magnetic field is written H, = Cmi h m f $ f A .  The magnetic moment which is induced 
is m = E, mnfm and the susceptibility is given by &/ah .  In terms of fnu we can 
write the perturbation due to the magnetic field as 

2 i t  i 
H I  = C h I m I  [(IVmuI’ - IV-mol ) fnufnu + 2vmuv~-uf iL.C-u]  (5.4) 

m = I ~ I  C(IVmu12 - IV-mu12>G’,u(k) + 2VmuVG-uGu-u(k) (5.5) 

nu 

and 

nu k,w 

where GAu-u is the Fourier transform of (T,fA~(~>f~-,(0). 
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Evaluating this we find two types of contribution. The first is straightforward 
involving only aqm/ah and gives 

The second type of terms depend on dE-,/ah for which we need more information 
about the quasiparticle band. If, however, we go back to the case where A = 0 we find 
this term vanishes when the Fermi level lies in the lower band and gives a contribution 
0: pzfl when the Fermi level lies in the gap (exactly the result we had before). We do 
not expect this term to make a big contribution to  the susceptibility even when A # 0 
and we obtain exactly the result we had from the 1/N model. As in the degenerate 
case the inclusion of the spin-orbit coupling does not affect the result for T = 0. 
At finite temperatures, however, it is possible that slightly different results would be 
obtained. 

The calculation of xx involves interband terms even at  T = 0 and cannot therefore 
be calculated without the full bandstructure. 

6. Comparison with experimental results 

In this section we present our results and compare with experimental data. We note 
that this provides some kind of test of the 1/N method with N = 2. 

We start by considering results for T = 0. In figure 1 we show the ratio x,/x, as 
a function of Al/TK, where T K  = 7-', for different crystal field levels. We have taken 
A2 = 2A1. The broken curve gives the results for crystal field levels given by (4.4). 
x,/x, decreases rapidly from one for the degenerate case to the limiting value of i. 
The other curves are for the crystal field scheme given by (4.7) with different values 
of a and b .  We see that for a nominal ground state I f i), x,/x, > 1 and can become 
large especially for a close to 1. For the other case, i.e. nominal ground state I f 9 )  
the situation is more complicated and x,/x, can be greater than or less than 1. The 
value of the ratio is a sensitive function of both a and A l .  For a2 0.62 x,/x, varies 
very little with A l .  The results can be compared with a similar calculation based on 
the Coqblin-Schrieffer model (Hanzawa 1986). The results are seen to be qualitatively 
similar. 

We want now to consider the temperature dependence for several specific com- 
pounds. In order to  see the crystal field effects we need T, > A 1 , A 2 .  Convenient 
parameters are V/W = 0.01 and E,/W = -0.0028. These give T, > l O O T K .  The 
effective moment in the Curie-Weiss regime is reduced due to  the mean-field approx- 
imation by a factor between 2 and 1 / (1  - 6-l)  depending on the relative values of T, 
and A.  

We look firstly at  the compound CePt,Si, which has crystal field configuration 
given by (4.4) and T K  - 50 K ,  A1 - 80 K - 1.6TK and Az - 230 K - 4.6TK. For 
T = 0 we find x , / x ,  = 0.2. This can be compared with the experimental value of 
0.57 (Gignoux et a1 1988). We note that x, > X ,  in both cases but the values differ 
significantly. The theoretical value can be increased by taking smaller values of A I  and 
Az.  At finite T we find that the shapes of the curves for x, and X, are qualitatively 
different. l/xz has relatively little structure. There is a very weak maximum at very 
low temperatures - 0.1TK followed almost immediately by a linear dependence on T. 



9108 S M M Evans 

I 
I , I 
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Figure 1. xz/xz at  T = 0 for different crystal field schemes as a function of Ai  /TK. 
The broken curve corresponds to the crystal field scheme given by (4.4) and the full 
curves to (4.7) with different values of a'. 

0 1 2 3 
T /  TK 

Figure 2. x+(0)/xz(T) as a function of temperature for crystal field levels (4.4) for 
three different values of Ai  /TK. 

1/xZ , in contrast, has a very distinctive structure. In figure 2 we show xz(0)/xa(T) 
against T for three values of Al/TK with A2/Al given by the experimental parameters 
listed above. We find a very weak minimum for T N O.lTK after which there is a 
tendency for x;' to rise linearly with T with a slope corresponding to the magnetic 
moment of the ground-state doublet. This is followed by a maximum and then by 
a pronounced minimum after which the curve again rises linearly with T this time 
with the full magnetic moment. The position of the pronounced minimum scales 
approximately with AI and this feature is due to crystal field rat.her than Kondo 
effects. This feature in x;' is in qualitative agreement with experiment where a 
minimum due to  crystal field effects is also seen (Ayache et  a1 1987). Experimentally, 
however, both xz and xz have a similar qualitative behaviour which is puzzling in 
view of our theoretical result. To clarify the situation we have performed a simple 
single ion crystal field calculation which is expected to give the correct qualitative 
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1.5 - 

-L 1.0 - 

features associated with the crystal field while clearly missing the low temperature 
Kondo behaviour. In this calculation also the behaviour of xx and x, is very different 
and is consistent with the results described above. We note that the experimental 
results at  low temperature indicated the presence of magnetic impurities which then 
had to be subtracted out. The apparent discrepancy between experiment and theory 
may then be due to experimental uncertainty in this region. 

X;’ 

1 

OM 

0.15 

Table 1. Experimental parameters (see text for references). 

CeCuz Si2 0.83 0.56 10 14 36 

CeA13 0.24 0.97 3 20 30 
CeRuzSiz 0.96 0.28 19 12 53 

CeSil .I36 0.45 0.89 40 8 7 

*.O 1 / 

Figure 3. ( x Z T ~ ) - I  and ( x = T ~ ) - l  as a function of temperature for CeCuzSiz 
(parameters as in table 1). The inset shows the behaviour at very low temperatures. 

We consider now those compounds which have crystal field levels given by (4.7). 
The experimental parameters for a number of compounds are given in table 1. In 
figure 3 we show the temperature dependence of l /xt and l/xx for CeCu,Si, which 
has nominal ground state 1 f 5). At T = 0, x,/x, = 1.5 which is between the 
two experimental values of 1.1 and 2 (Onuki et a1 1984 and Assmus et a1 1984). 
At very low temperatures there is a region relatively independent of T with a very 
weak minimum. The curves then rise monotonically showing a smooth crossover from 
the small magnetic moment characteristic of the ground state doublet to the full 
magnetic moment. This behaviour is fairly typical of all compounds with this level 
scheme and is in qualitative agreement with experiment. For CeRu,Si,, which also 
has nominal ground state I f  5) (Lacerda et a1 1989), we find a much larger anisotropy 
a t  T = 0 with x,/x, = 11 comparing reasonably well with the experimental value 
of 15 (Haen el a1 1987). For the compounds with nominal ground state 1 f 5 )  the 
situation is more complicated and it is possible for the two curves to cross. For CeA13 
we find x,/x, = 3.2 at T = 0 in good agreement with the experimental value of 
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3.6 (Jaccard et a1 1988). The two curves cross at  T - 3TK. This feature is also 
observed experimentally but at  somewhat higher temperatures N 12 TK. For CeSi,,,, 
the crossover is in the opposite direction. At T = 0 we have x,/x, = 0.87 compared 
with the experimental value 0.56 (Pierre et  a1 1990). The curves cross at  T - 0.5TK, 
which is again somewhat smaller than the experimental value of 2 TK. The results for 
T = 0 are summarized in table 2. 

Table 2. Comparison between theory and experiment for the ratio x z / x 2  at T = 0. 

X z I X r  

Compound Experiment Theory 

CeP t2 Si2 0.57 0.2 

CeRuzSiz 15 11 
CeCuz Si2 1.1, 2.0 1.5 

CeAl3 3.6 3.2 
CeSii .86 0.56 0.87 

7. Conclusion 

We have considered here the inclusion of spin-orbit and crystal field splitting within 
the slave-boson approach to the periodic Anderson model. Looking first at  the case 
where the f level is six-fold degenerate, we find that at  the mean-field level the use of 
the correct spin-orbit coupled quasiparticle bands in place of the 1/N bands makes 
no difference to  the Wilson ratio as has been previously discussed. At finite temper- 
atures, however, the behaviour is somewhat different with a much less pronounced 
Kondo maximum in x for low temperatures. Within the same model we can then go 
beyond the mean field level and consider the fluctuations. We use these to look at 
the correction to the Wilson ratio. A term N 1/N is found exactly as in the 1/N 
model but there are additional terms which depend on the value of peR, the effective 
moment for the band contribution to  the susceptibility. Furthermore, ImX(L, w )  is 
significantly different with a much smaller value as w +- 0 and correspondingly more 
weight for the inelastic contribution. In contrast we note that the T2 term in the 
resistivity can also be calculated and in this case the result is equivalent to the 1/N 
model. We conclude that care is needed in using the 1/N model and in general we 
cannot assume that the model is equivalent to  one in which the correct spin-orbit 
coupled quasiparticle bands are used. 

We consider next the effect of crystal field splitting and show that this is important. 
By including crystal field splitting in the 1/N model at the mean-field level we obtain 
a large anisotropy for the magnetic susceptibility which depends sensitively on the 
details of the crystal field scheme. The ratio of xt to xz at T = 0 can be compared 
with other theoretical approaches and with experiment giving us some idea as to how 
well the 1/N approach works when N = 2. The quantitive agreement for x,/x, at 
T = 0 is good for most of the compounds considered. Furthermore several qualitative 
features are well described. This agreement with experiment is much better than 
we could reasonably expect and gives some justification for the view that the mean- 
field solution gives a better description of the normal state than the largeness of the 
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expansion parameter would lead us to believe. We can compare with a limited extent 
the effect of the correct spin-orbit coupling in the model with crystal field splitting. 
For T = 0 both 7 and xz are unchanged as for the degenerate case. The T2 term in 
the resistivity can also be calculated and this too is equivalent in the two models and 
gives an important anisotropy (Evans et a1 1990). In analogy with the degenerate case 
we may, however, expect some differences at  finite temperatures and in the Gaussian 
fluctuations. 
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